پایان نامه برای دریافت درجه کارشناسی ارشد (M.Sc) مهندسی محیط زیست (آلودگی هوا)

موضوع:
بررسی غلظت منواکسید کربن و مدلسازی انتشار آن در هوای داخل تونل رسالت و ارزیابی کارایی سیستم تهیه در شرایط عادی و بحرانی

استاد راهنما:
جناب آقای دکتر نبی ا... منصوری

استاد مشاور:
جناب آقای دکتر محمود محمودی
سرکار خانم دکتر پروین نصیری

نگارش:
حجت... الهی

سال تحقیق: ۱۳۸۶-۸۷
مطالب

عنوان

چکیده

مقدمه

اهداف

فرضیات

فصل اول - آلاینده‌های هوا و اثرات آنها

1-1. آلاینده‌های هوا و اثرات آنها

1-2. آلودگی هوای شهری - صنعتی

1-3. تعریف آلودگی هوا

1-4. ترکیب جو

EPA آلاینده‌ای شناخته شده هوا توسط

1-5. آلاینده‌های آلودگی هوا

1-6. اثرات زیست محیطی آلودگی هوا

1-7. اثرات آلودگی هوا بر سلامت انسان

1-8. اثرات آلودگی هوا بر سیار جانداران

1-9. اثرات آلودگی هوا بر آثار تاریخی و اقتصادی

1-10. اثرات آلودگی هوا بر اب و خاک

1-11. آلاینده‌های آلودگی هوا و اثرات آنها به تفکیک

منوکسیدکریjen (CO)

17-2. دی اکسید کوئردن (SO2)

17-3. دی اکسید نیترژن (NO2)

17-4. ازون (O3)

17-5. ماده غلظ (PM10)

17-6. هیدرو کربن‌ها (HC)

17-7. مواد آلی فرار (VOCs)

18. حوادث تاریخی ناشی از آلودگی هوا

18-1. حوادث در میوز در بلژیک

18-2. حوادث دونورا

18-3. حوادث لندن

18-4. حوادث اسپاک

18-5. حوادث نیوزیلند

19-1. استانداردهای آلودگی هوا

19-2. استانداردهای آلودگی هوا

20. معرفی تونل‌های بزرگراه رسالت

20-1. معرفی تونل‌ها

20-2. علل احداث تونل
فصل سوم - بررسی سوابق موضوع

۱- تاریخچه
۲- مطالعات اندیزه گیری مونوکسیدکرین
۳- بررسی سوابق مدل انسان اندیزه گیری مونوکسیدکرین
۴- نواع مدل‌های آنلودگی هوا
۵- مدل‌های آنلودگی هوا با مقیاس چهارگانه
۶- موضوع مدل‌ها
۷- کاربرد مدل‌های آنلودگی هوا

فصل چهارم - استراتژی اندیزه گیری و نتایج آن

۱- استراتژی اندیزه گیری
۲- دستگاه‌های اندیزه گیری مورد استفاده در تونل
۳- پارامترهای اندیزه گیری
۴- زمان اندیزه گیری
۵- ساختار اندیزه گیری
۶- محل اندیزه گیری
۷- اندازه گیری اندیزه گیری
۸- نتایج اندیزه گیری
۹- نتایج اندیزه گیری
۱۰- نتایج اندیزه گیری
۱۱- نتایج اندیزه گیری

فصل پنجم - نمودارها

۱- تحلیل نمودارهای حاصله از میانگین اندازه گیری های آذر ماه سال ۱۳۸۶
۲- تحلیل نمودارهای حاصله از میانگین اندازه گیری های بهمن ماه سال ۱۳۸۶
۳- تحلیل نمودارهای حاصله از میانگین اندازه گیری های اسفند ماه سال ۱۳۸۶

مقدمه
فصل ششم - مدل سازی و بررسی سیستم تهویه در شرایط عادی و اضطراری

۱- مقدمه... ۱۲۲
۲- مدل سازی.. ۱۲۶
۲-۱- مدل سازی گیپ (مدل سازی آزمایشگاهی)... ۱۲۴
۲-۲- مدل سازی ریاضی.. ۱۲۴
۳- توصیف آماری یافته‌های نظر سنگین... ۱۲۵
۴- تحلیل داده‌ها و بررسی روابط بین متغیرهای تحقیق.. ۱۳۰
۵- تحلیل داده‌ها با حذف داده‌های پرت.. ۱۴۸
۶- مدل سازی با داده‌های مشخص در ساعت ۷ از ۱۳ تا ۱۶ از ۷-۴-۶۲... ۱۵۰
۷- بررسی فرضیه... ۱۵۲

فصل هفتم - بحث و نتیجه‌گیری

۱- نتیجه‌گیری گیری.. ۱۵۴
۲- پیشنهادات... ۱۵۶
۳- منابع.. ۱۵۷
۴- چکیده لاتین.. ۱۵۹
چکیده:
آلودگی هوا که ناشی از زندگی مدرن امروزی و فعالیت‌های بشر می‌باشد، یکی از معضولات عظیم کلان شهر‌هایی نظیر شهر تهران می‌باشد و می‌تواند اثرات زیست محیطی بر جای بگذارد.
با توجه به اینکه حمل و نقل، سهم عمده‌ای در آلودگی هوا در کلان شهر تهران دارد، استفاده از مسیر‌های کوتاه و کلیدی گذاره‌ای برتر جهان جهت پیشگیری و کنترل آلودگی هوا و اتفاقات می‌باشد. یکی از این راه‌های ارتباطی تونل‌های باشق در چند سال اخیر، معیل ترافیک و به تبع آن، آلودگی هوای شهر تهران، دولت را بر آن داشته که جاری ای اساسی و زیر بنای برای حل این مشکل بیاندیشت و یکی از آرزوهای دیرینه کلان شهر تهران که برخورداری از هوای پاک و دستیابی به توسعه پایدار است را تحقق بخشد. یکی از این راه حل اساسی، راه اندازی و توسعه تونل‌ها و پل‌های ارتباطی در نقاط خصوصی، شلوغ و پر ترافیک تهران می‌باشد. یکی از این طرح‌ها ساخت تونل رسانه تهران می‌باشد. وجود هر سازه نیاز به پرهیز دارد تا مشخص شود سهم انسان از وجود آن در ارتباط با بهداشت چیست؟ مطمناً ساخت این سازه کاهش مشکلات انسان می‌باشد اما در پشت این کاهش مشکلات یک سری عوامل و معیضاتی وجود دارد که به نوبه‌ی خود از اهمیت بالای برخورداری می‌باشد و بر ای سلامتی انسان مشکل ساز است. هدف این تحقیق شناسایی این مشکلات می‌باشد.
Abstract:

Nowadays welding processes are very popular in a wide variety of industries and because of that, a lot of people are being exposed to related dangers and chemical pollutions. Watching for expert technicians' health, that is the most valuable part of the industry depends on research and evaluation of dangers and pollutants of the working environment. This study aims at evaluating particulate pollutants rate (welding fumes) in a metal industry which manufactures automotive parts using relatively high percentage of welding processes.

The working environment under evaluation in this study consists of seven roofed halls with an area of 77000 sq.m. Located in the west of Tehran. In this workshop 26 welding technician's work on manufacturing automobile axels (Samand, Peugeot 405, Peugeot 206, Peugeot Pars, and Peykan RD & Pride) using CO₂ and electricity type welding processes. Most of the job is being carried out on ordinary benches with some requiring special devices. An inefficient local ventilation system is used to exhaust generated pollutants.

28 samples of total particulate matter in four measuring stations Including: welders' breathing zone (10 samples), workshop's environment (6 samples), outside of the hall (6 samples) and exhaust air from hall (6 samples), have been taken and measured using gravitation and atomic absorption methods. Samples have been taken using a high volume pump with volumetric flow rate of 112 lit/min and round fiber glass filters with 110 mm in diameter. Through the procedure filters' weight were measured using a laboratory scale having an accuracy of 0.0001 mg and also 6 filters were considered as blanks. Right after weight measurement procedure collected particles on filters were extracted using nitric acid, and using atomic absorption method, the amount of heavy metallic elements including iron, Manganese and Nickel were measured.

The outcome of measuring concentration of fumes using gravimetric method confirmed the followings: the average fume concentration found in operational halls: 0.35 mg/m³, outside of the halls: 80.82 µg/m³, breathing spaces of technicians using CO₂ welding: 1.53 mg/m³, and ventilation exhausts: 90.07 mg/m³. The outcome of sample analysis and measurement of Iron, Manganese and Nickel using absorption method indicated the followings:

In order to efficiently capture pollutants generated by welding processes used in the workshop, a local exhaust ventilation system have been selected as the most appropriate option. So 26 hoods in different sizes and 3 models recommended by ACGIH including VS-90-01, VS-90-02 & VS-99-03 have been selected to capture pollutants from their sources. In order to optimize the operation and to minimize installation and operating costs and to include possibility of separate function of for division #1, 8 benches are ventilated using two slot openings and 6 side hoods which interconnect through 2 secondary branches and form a primary branch with a diameter of 31 inches, flow rate of 14140 cfm and flow speed of 2735 fpm which is exhausted through a centrifugal fan with an impeller diameter of 28.5 inches and power of 7.2 hp in an elevation of 50 ft after passing through a wet scrubber for filtration. In division #2 consists of 11 hoods, 3 secondary branches and a primary branch whith diameter of 37.5 inches, flow rate of 21505 cfm, flow speed of 2807 fpm and a centrifugal fan with an impeller diameter of 36.5 inches, power of 11.54 hp and division #3 consists of 7 hoods and three secondary branches which flow end up through a primary branch with a diameter of 31 inches flow rate of 13720 cfm and flow speed of 2654 fpm which is exhausted through a centrifugal fan with an impeller diameter of 30 inches and power of 6.58 hp and separate outlets at an elevation of 50 ft after filtration in a wet scrubber. Specifications of scrubbers (Spray Towers) in three divisions are as follows.